Environmental Economics for Environmental Sciences (ENR-21306)

David Zetland
Environmental Economics and Natural Resources Group

International Environmental Problems I (Perman et al. 9.1)
Last week

- C&T game summary...
 - C&T should lead to >= profits vs Cap only
 - May make more if endowment > requirements (e.g., “Russians”)
 - Lumpy supply and demand, TCs and information costs are facts
 - Carbon taxes are MUCH faster to use!
- Interesting discussion of green jobs, etc.
Incomplete information, risk and uncertainty

- We rarely know everything, even about ourselves
- **Risk** about future actions of others or outcomes may be known with a probability, e.g., heads on 100 flips
- **Uncertainty** can refer to “known unknowns” or “unknown unknowns.” These cannot be managed and may not even be subject to planning
Imperfect information problems

- Pollution impacts: local risk; global uncertainty
- Environmental values and MACs: asymmetric information on values can be reconciled in markets (controversial), but not regulations (normal)
- Pollution targets
 - Benefits subject to risk and uncertainty
 - Costs subject to asymmetric information
 - Expected values (risk) of benefits can be very wrong, and costs may be higher if cost model is wrong
- “Precautionary Principle” says must prove no harm, which is not falsifiable. PP, therefore, may imply Q=0
Choosing an instrument

- Quantity (permits) and price controls (taxes) are the same with perfect information, but we don’t have that!
- Both can/will go wrong with imperfect information, but the calculation of the variation in their impacts is academic (we do not know real D&S curves)
- Discuss winners and losers in H/W
Instruments as implemented...

- The choice of pollution-reduction instrument will reflect the balance of power among taxpayers, polluters, suppliers (of technology and fuels), customers, and so on.

- It’s rare to see instruments chosen for economic efficiency or social equity. They are more often chosen to suit special interests (money and power).

- That said, try for flexibility, humble beginnings, and short term bribes to get things going.
Summary to date

- MBIs (emissions tax, abatement subsidy or C&T):
 - usually cost-effective
 - provide incentives to develop clean technologies
 - should be chosen according to TCs and information
 - may not be as good as CAC
 - there are ALWAYS problems with information, asymmetries, burden-sharing and lobbying
 - wrong instrument or parameters leads to harm, sometimes in excess of benefits
International environmental problems (IEPs)

- IEPs are from transboundary pollution
 - One country’s emissions affect other countries
 - Strategic interaction of decisions affecting emissions
- Examples: climate change, ozone depletion, acid rain, biodiversity loss (transboundary + global commons), and infectious diseases
- No international organization can enforce an outcome
- We can use game theory to understand problem and think about solutions
Game theory

- Analysis of potential for cooperation among countries

Game theory is used to analyze choices where the outcome of a decision by one player depends on the decisions of the other players, and where decisions of others are not known in advance

- **Players**: people/countries in a strategic relationship
- **Strategies**: possible decisions taken by each player
- **Pay-offs**: earnings/costs for a certain strategy
Two-player simultaneous game

- Pay-off matrix shows payoffs to (player 1, player 2)

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Left</td>
</tr>
<tr>
<td>(a,b)</td>
<td>(c,d)</td>
</tr>
<tr>
<td>Down</td>
<td>(e,f)</td>
</tr>
</tbody>
</table>
Two-player sequential game

- This is called the “extensive form”
- “Backwards induction:” Assume profit maximization, and look at payoffs from end to start, e.g., b vs d to 2 leads to a or c to 1, who also compares e & g.

```
1
<table>
<thead>
<tr>
<th>Up</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left</td>
</tr>
<tr>
<td></td>
<td>Right</td>
</tr>
<tr>
<td></td>
<td>Left</td>
</tr>
<tr>
<td></td>
<td>Right</td>
</tr>
</tbody>
</table>

(a,b) (c,d) (e,f) (g,h)
```
Two-player simultaneous game

- Players 1 and 2 do not know each other's actions, i.e., same as simultaneous box.
Terminology

- **Dominant strategy**
 - A player has a **dominant strategy** when one strategy offers a higher pay-off *no matter* the choice of the other player.

- **Nash Equilibrium**
 - A set of player choices is a **Nash equilibrium** if each player receives the best possible outcome, *given the other players’ choices*, i.e., neither player would benefit from changing his action.
Applying game theory to CC

- Maximize **own benefits** in a **non-cooperative** game
 - Two countries, X and Y
 - Abatement costs 7 to one but creates benefits of 5 for **both**
 - If both abate at a cost of 7 to each, then both get a benefit of 10, or 10-7=3, net
 - Payoff for non-abatement (status quo) is 0

- Let’s see what this looks like...
CC PD in simultaneous form

- Solve: What should 1 do if 2 chooses ‘Pollute’ etc.

<table>
<thead>
<tr>
<th></th>
<th>Pollute</th>
<th>Abate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>(0,0)</td>
<td>(5-0,5-7) = (5,-2)</td>
</tr>
<tr>
<td>Country 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>(5-7,5-0) = (-2,5)</td>
<td>(10-7, 10-7) = (3,3)</td>
</tr>
</tbody>
</table>
PD applied to CC

- A Prisoner’s Dilemma...
 - has is a single Nash-equilibrium (‘Pollute’, ‘Pollute’)
 - in which both players would be better off with Abate
 - but (‘Abate’, ‘Abate’) is not an equilibrium, because it’s better to choose when other chooses Abate

- Underlying problem (Tragedy of the Commons)
 - Pollution abatement has public good characteristics (nonrival; nonexcludable)
 - Nonexcludability induces free rider behaviour

- Bad (good?) news: This explanation is wrong

- Why listen to Harding when Ostrom was right? There are MANY examples of common pool dilemmas that do NOT result in a tragedy of the commons!
Game theory, PD and IEPs

Can game theory explain IEPs?
- Yes, interdependent payoffs means interdependent moves
- Yes, some decisions are simultaneous, but most are sequential
- No, rules are endogenous (i.e., conflict theory)

Can PD explain IEPs?
- No, IEPs are resolved over time (sequential), so PD does not apply
- No, sequential games with endogenous rules allow for adjustment, \textit{tit for tat} confidence building and verification
- Yes, a Core can deliver results but everyone wants others to join the core while they freeride
- Most people are reciprocators (fair is fair), who wait for “leaders” to move first. Are those leaders cooperators or free riders?
Why are there too many free riders?

- It’s possible to address CC with a Core, but
 - A move that benefits a nation may not benefit interest groups that will block the move (lobbying, FUD), e.g., NL g/w tax
 - China and Australia prefer cheap energy and growth; US believes in God; Canada may benefit from “warmth”, etc.
 - Special interest politics, in other words, makes it easier for the losers to block change that will benefit the winners
- Cannot even assemble a Core 😞
- The move from mitigation to adaptation changes the “good” from common pool (atmospheric pollution) to private, i.e., NL has dikes but Bangladesh does not
- Dutch will pay more, but costs and benefits aligned